УДК 621.382.2/.3

Реализация радиотракта ППМ Ки-диапазона на основе комплекта многофункциональных МИС

А.В. Бутерин¹, А.В. Иванов¹, А.С. Щербаков¹, А.В. Кондратенко², Д.А. Шишкин², П.С. Сорвачев²

¹ Обособленное подразделение АО «Микроволновые системы» в г. Саратов ² Обособленное подразделение АО «Микроволновые системы» в г. Нижний Новгород

Аннотация: в докладе представлены результаты разработки комплекта монолитных интегральных схем: векторного модулятора (в иностранной терминологии – Core Chip), реализованного на основе технологического процесса 0,15 мкм GaAs pHEMT, и оконечного устройства (в иностранной терминологии – Front-End Module), реализованного на основе технологического процесса 0,25 мкм GaN HEMT, а также пример реализации на основе данных монолитных интегральных схем радиотракта многоканального приемо-передающего модуля Ки-диапазона частот.

Ключевые слова: многофункциональная монолитная интегральная схема диапазона СВЧ, приемопередающий модуль, аттенюатор, фазовращатель, малошумящий усилитель, усилитель мощности, антенный коммутатор, драйвер управления, арсенид галлия, нитрид галлия.

1. Введение

Использование электронной компонентной базы высокой степени интеграции является трендом при построении приемо-передающих модулей (ППМ). Интеграция нескольких функциональных узлов на один кристалл позволяет уменьшить габаритные размеры и повысить технологичность сборки всего ППМ, что, в конечном счете, приводит к снижению себестоимости производства. Кроме того, исключение большого числа сварных межсоединений, имеющего место при реализации тракта СВЧ на основе однофункциональных монолитных интегральных схем (МИС), позволяет добиться качественного улучшения параметров ППМ и минимизировать их разброс от модуля к модулю.

В настоящее время можно выделить ряд архитектур построения радиотракта ППМ на основе многофункциональных МИС (см. рисунок 1):

- Классическое решение в виде трех микросхем (малошумящий усилитель, усилитель мощности и векторный модулятор), ориентированное не на целевой диапазон частот, а реализованное в сверхширокополосном исполнении;

- Решение в виде двух микросхем: векторного модулятора, реализуемого, как правило, на основе GaAs технологического процесса, и оконечного устройства, реализованного на основе GaN процесса и содержащего малошумящий усилитель в приемном канале, усилитель мощности в передающем канале, а также антенный коммутатор, заменяющий ферритовый прибор в составе ППМ и отвечающий за переключение режимов «Прием/Передача»;

- Микросхема на основе GaAs технологического процесса с повышенной степенью интеграции СВЧ узлов (содержащая более одного приемо-передающего канала), используемая совместно с интегральной схемой управления, реализованной на основе кремниевого технологического процесса;

- Многоканальная интегральная схема векторного модулятора (формирователя диаграммы направленности набора излучателей, в иностранной терминологии – Beamformer), реализованная в Si/SiGe базисе.

Рисунок 1. Современные тренды построения радиотракта ППМ в интегральном исполнении

Каждая из архитектур имеет свои достоинства и недостатки (технические, организационные, экономические, и т.д.), которые могут быть сформулированы, исходя из системных требований к конкретному комплексному проекту.

В работе, которой посвящен доклад, выбор был сделан в пользу реализации радиотракта на основе комплекта из двух МИС: GaAs векторного модулятора и GaN оконечного устройства. Основаниями для данного решения послужили: богатый опыт дизайн-центра AO «Микроволновые системы» в реализации однофункциональных и многофункциональных МИС на основе GaAs и GaN полупроводниковых процессов; доступность вышеобозначенных процессов и экономическая целесообразность их использования; а также соответствие с точки зрения ожидаемых от ППМ технических параметров и графиков разработки и производства.

2. Краткое описание разработанных МИС Ки-диапазона

МИС оконечного устройства (в иностранной терминологии – Front-End Module) MSN011V реализована на основе технологического процесса 0,25 мкм GaN HEMT и содержит в своем составе: малошумящий усилитель (МШУ) в приемном канале; усилитель мощности (УМ) с функцией контроля уровня выходного сигнала в передающем канале; а также антенный коммутатор, обеспечивающий переключение режимов «Прием/Передача». Функциональная схема и топология кристалла приведены на рисунке 2. Габаритные размеры составляют 3,5×3,0×0,1 мм.

Рисунок 2. Функциональная схема и топология МИС MSN011V

МИС векторного модулятора (в иностранной терминологии – Core Chip) MSP010D реализована на основе технологического процесса 0,15 мкм GaAs pHEMT и содержит в своем составе: систему коммутаторов, обеспечивающих переключение режимов «Прием/Передача»; МШУ на входе приемного канала; 6-разрядный аттенюатор, 6фазовращатель два буферных усилителя в общем разрядный И плече; предварительный УМ на выходе передающего канала; цепи стабилизации затворного смещения всех усилителей; а также 24-разрядный драйвер последовательнопараллельного типа, обеспечивающий загрузку данных по амплитудным и фазовым состояниям для режимов «Прием/Передача» за один цикл. Функциональная схема и топология кристалла приведены на рисунке 3. Габаритные размеры составляют 6.0×3.8×0.1 мм.

Рисунок 3. Функциональная схема и топология МИС MSP010D

Поскольку комплект в составе MSP010D и MSN011V был разработан в первую очередь для реализации собственного комплексного проекта АО «Микроволновые системы», параллельно с характеризацией экспериментальных образцов микросхем каждого типа в отдельности была инициирована проверка их работоспособности в составе 8-канального ППМ, промежуточные результаты которой приведены ниже.

3. Результаты макетирования радиотракта на основе разработанных МИС

Для проверки схемотехнических, топологических и конструктивных решений, заложенных в групповой 8-канальный ППМ (см. рисунок 4), был разработан макет приемо-передающего канала (ППК), фотографии которого приведены на рисунке 5.

Рисунок 4. 3D-модель узла 8-канального ППМ, в который устанавливаются MSP010D и MSN011V

В состав макета ППК входят: МИС векторного модулятора MSP010D, МИС оконечного устройства MSN011V, элементы внешней обвязки детектора мощности в составе MSN011V, обеспечивающие требуемый уровень выходного напряжения, а также модуляторы питания по цепям «20 В», «11 В» и «8 В». Для возможности управления режимами «Прием/Передача» в обеих микросхемах, а также состояниями функциональных узлов аттенюатора и фазовращателя в составе MSP010D посредством персонального компьютера было разработано устройство сопряжения, устанавливаемое непосредственно на измерительную оснастку.

Рисунок 5. Оснастка для проверки параметров макета ППК (слева) и устройство сопряжения измерительной оснастки с персональным компьютером (справа)

На рисунке 6 приведены амплитудные характеристики макета ППК на частоте 16 ГГц, а также частотные зависимости вносимого фазового сдвига для 64 возможных состояний фазовращателя и вносимого ослабления для 64 возможных состояний аттенюатора при работе канала в режиме приема.

Рисунок 6. Экспериментальные характеристики при работе макета канала в режиме приема

На рисунке 7 приведены амплитудные характеристики макета ППК на частоте 16 ГГц, а также частотные зависимости вносимого фазового сдвига для 64 возможных состояний фазовращателя при работе канала в режиме передачи. Измерение частотных зависимостей вносимого ослабления не проводилось в виду отсутствия требований к использованию аттенюатора в режиме передачи. Однако архитектура МИС MSP010D позволяет полноценно использовать функцию ослабления в обоих режимах.

Рисунок 7. Экспериментальные характеристики при работе макета канала в режиме передачи

Основные параметры макета ППК приведены в таблице 1.

Наименование параметра, единица измерения	Значение
Диапазон рабочих частот, ГГц	1616,5
Линейный коэффициент усиления в режиме приема, дБ, тип. знач.	39
Линейный коэффициент усиления в режиме передачи, дБ, тип. знач.	42
Выходная мощность при 1дБ компрессии в режиме приема, дБм, тип. знач.	15
Выходная мощность при 5дБ компрессии в режиме передачи, дБм, тип. знач.	33
Диапазон вносимого фазового сдвига (6 бит, шаг 5,625°), град.	354
Диапазон вносимого ослабления (6 бит, шаг 0,5 дБ), дБ	31,5
Ток потребления по цепи питания «8 В», мА	165
Ток потребления по цепи питания «11 В», мА	80
Ток потребления по цепи питания «20 В», мА	700
Ток потребления по цепи питания/смещения «-3,3 В», мА	45
Стандарт сигналов управления	ТТЛ
Время переключения амплитудных и фазовых состояний, нс, не более	35

Таблица 1. Измеренные электрические параметры разработанной МИС

4. Заключение

Полученные экспериментальные характеристики для макета ППК подтверждают работоспособность каждой из разработанных многофункциональных МИС, возможность их совместного использования для реализации выбранной архитектуры радиотракта, а также позволяют прогнозировать удовлетворительные результаты после изготовления и испытания группового 8-канального ППМ.